Ads 468x60px

Tuesday, July 24, 2012

The antediluvian world

Although various ancient traditions refer to a lost antediluvian world, the one that stands out is the tradition in the early chapters of Genesis, because of its geographical detail, its monotheism (which has been shown to predate polytheism) and its historical (rather than epic) style of narration. These chapters describe a world very different from our own, either because the world really was different or because a later pre-scientific culture speculated about it in error. So what source of information did they draw upon?

As a text, Genesis cannot be older than its reputed author, Moses, about the mid 15th century BC. There are, however, older writings from Mesopotamia, of a chiefly mythic or epic character, that contain recognisable elements of the same tradition, only broken up, rehashed and mixed in with new material. These suggest that there once was a common, oral, pre-literate tradition from which the author of Genesis and the various authors of the Mesopotamian stories separately drew. A detailed case for this conclusion is made on another page. Here we consider what can be deduced from the Genesis text itself.

The antediluvian hydrosphere

In the beginning, rain was not part of the natural order (Gen 2:5). The antediluvian world was watered by moisture which oozed through the soil from a reservoir beneath the land, called the ‘deep’ (2:6, Tsumura 1989). Springs and rivers also got their water from the deep. If oceans had surrounded the land, their evaporation would have generated clouds and rain. However, Genesis does not say there were oceans. It says that the waters were gathered ‘into one place’ (the deep) and were called ‘seas’ (many seas, just as there were many rivers). The seas seem to have been lakes (as in ‘Dead Sea’): bodies of water enclosed by land and supplied by the deep beneath the land. Psalm 24 specifically says that the land was founded upon the seas and rivers. The earth is pictured as resting on pillars sunk into a single, subterranean ocean, with fish living ‘under the earth’ (Deut 4:18). Rainbows were a new phenomenon in the post-Deluge world (Gen 9:13) because rain was a new phenomenon, the ocean from which moisture could evaporate being now at the surface. A different water cycle had come into operation.

Here is evidence that the details of Genesis 1-6 were not the product of speculation based on what Israel inferred about the present world. In any agricultural society, including ancient Palestine, rain was of supreme importance, since it was the source of the water needed for growing crops and for sustaining the pastures that fed their animals. Egypt had the Nile, Mesopotamia the Tigris and Euphrates – the Israelites and the Canaanites had no major rivers, other than the Jordan along the eastern edge of the country. Palestine was a land of brooks and springs which drank from the rain of heaven (Deut 11:11). If the rains did not come, the result was drought and famine. In Genesis 1-6, by contrast, the only mention of rain is the comment early on that it had not yet rained. At its formation the land was founded upon waters that were gathered underneath it, called the ‘great deep’, and it was this that sourced the springs and rivers that watered the land (Gen 7:11).

While the natural assumption is that the Israelites based their picture of the antediluvian world on their perceptions of the present world, the reverse seems to have been true. They described the present world as if it were essentially unchanged since antediluvian times. Jacob promised his son Joseph that he would receive blessings of heaven above and ‘blessings of the deep that couches beneath’. A psalm reminds the Israelites that the rocks which God cleft in the wilderness gave them drink ‘as from the great deep’, and Ezekiel says of a Lebanese cedar that ‘the deep made it grow tall, making its rivers flow round the place where it was planted’ (31:4). Fish lived ‘in the water under the earth’ rather than simply ‘in the sea’.

An oral tradition about a differently constituted primeval earth seems to have been still current in the first millennium BC, and it was this which provided the mental picture of what was underneath the present earth. Psalm 33, for example, states:
By the word of Yahweh were the heavens made,
     and all their host by the breath of his mouth.
 He gathered the waters of the sea as in a jar;
     he put the deeps in storehouses.

When we ask how the psalmist might have known that, the answer must be that he was alluding to a tradition known to everyone. It was part of the nation’s heritage, maintained by song as much as by narration (Job 36:24), and in their references to the tradition the psalmists themselves helped to maintain it. So did Solomon when he retold the acts of creation in a section of his Proverbs, the only new element being his personification of wisdom, the first thing to be created (Prov 8:22).

The tradition also seems to have been current in countries beyond the confines of Palestine. The inhabitants of the city-state of Ugarit, who spoke a language closely related to Hebrew, had an almost identical word for the deep, denoting the same idea. The Sumerians of Mesopotamia had the same idea but a different word, calling it the Apsu. They visualised the earth as consisting of three levels: the inhabited surface, a middle section where the dead resided, and the Apsu which shut in the ‘sea’ and was the source of all springs, marshes and rivers (Atrahasis, Seely 1997, Horowitz 1998). Most scholars assume that the Canaanites and the Israelites got their picture of the world from the Mesopotamians, by a process of cultural diffusion. The cultures of the Near East were far from homogeneous, however, and a simpler explanation might be that the fundamental elements of Ancient Near East cosmology derived from a common tradition.

The antediluvian atmosphere

The present atmosphere is divided into three temperature-defined layers: the troposphere, where convecting packets of air cause weather, the stratosphere, where the airflow is mainly horizontal, and the high-temperature thermosphere. It consists of 78% nitrogen, 21% oxygen, and 1% other gases, and thins with altitude.

We know nothing at all about the antediluvian atmosphere. It was probably thicker than now, and it certainly would have had a different composition, for the present mix is the outcome of a continually changing biosphere, weathering reactions and volcanic outgassing. Oxygen levels in the Carboniferous period were to reach 30-35%, promoting unusually large body sizes (e.g. dragonflies with 70 cm wingspans) and widespread fires. The proportion dipped in the Triassic to less than 15%.

The primeval atmosphere needed to be thick enough to cope with attrition by the solar wind, at a time when the Earth had no magnetic field to protect it (though the solar wind itself may have been weaker). Much of it would have been destroyed in the Cataclysm at the end of the Hadean, when fiery asteroids ripped through. Although the level of atmospheric oxygen in the succeeding Archaean period is controversial, it was probably lower than now and replenishing the oxygen would have been a long process. The only major source of free oxygen is photosynthesising organisms: plants on land and phytoplankton in the sea. Desertification, deforestation and ocean acidification today are consequently causing oxygen levels to fall.

The antediluvian mantle

Originally there were no igneous rocks as such, nor rocks derived from them (such as sandstones). Creation theory postulates in the beginning the simplest state that could naturally lead to the present state – the state of minimum entropy. Thus, below the great deep, the planet’s composition would have been homogeneous (not differentiated into crust, mantle and core) and ‘chondritic’, i.e. the same chemically as that of the other rocky planets.

At the surface, temperatures were suitable for life. Further down, they would have increased as a function of increasing pressure, along what is called the ‘adiabatic gradient’. If we assume an overall gradient of around 0.3 °C per km (similar to the present mantle), the temperature at the centre would have been around 2,000 °C, as against an estimated present value of 5,000-6,000 °C. With such a gradient the Earth’s interior would have been solid, later melting as a result of thermonuclear fusion. After reaching peak temperatures in the early Archaean, it slowly cooled towards its present state where only the outer core is liquid. Thus the mantle was once hotter and more mobile than now. Nonetheless, even at its present temperature, its long-term behaviour is that of a fluid, convecting and bringing hotter material towards the surface where it melts and occasionally erupts.

Thermonuclear fusion – usually thought to occur only in the centre of stars – was able to occur deep in the Earth’s interior because the speed of light was very much higher. The process generated new elements and isotopes, many of them unstable, and released a vast amount of heat. As the isotopes decayed, they themselves emitted heat. Nuclear fission may also have played a role (Hollenbach & Herndon 2001). The solid interior therefore liquefied, from the centre outwards, and began to differentiate into chemically distinct regions of inner mantle and core. The overall temperature ceased to rise as (1) continuing decline in the speed of light brought thermonuclear fusion to an end, (2) the rate at which the unstable elements decayed into non-radioactive elements declined, and (3) decay reduced the amount of the radioactive material remaining. The present interior represents a return to the solid state (apart from the outer core) but now partitioned, and still giving out substantially more heat than is generated within.

The oldest minerals known are tiny crystals of zircon. They do not go back to the beginning but do predate the Cataclysm. They show that melting and recrystallisation was taking place in the presence of water, and that the interior was hot enough for granites to form. The mention of gold, iron, copper and quartz (onyx stones) in Genesis also implies magmatic processes, though we cannot infer that metal ores existed right from the beginning. Probably a long period elapsed before the minerals separated out of the mix and rose to the surface in saturated fluids.

Volcanic eruptions are likely to have become more frequent as time went on. With the heat of the interior increasing, thermal pressure under the land also began to build up. As sometimes happens before a volcanic eruption, the springs which watered the land may have dried up under the pressure (as related in Atrahasis). Eventually, the springs exploded and the lithosphere disintegrated. Within 40 days even the highest mountains were shattered and submerged, hot magma now rising over their underwater ruins.

 How much water remains locked up in mantle minerals is unclear. The total could be less than one tenth the amount contained in lakes and oceans or as high as one hundred times (Richard, Monnereau & Ingrin 2002). Some water enters the mantle through subduction of wet oceanic plates and is then recycled to the surface through outgassing of vapour along volcanic arcs. The deep water in the interior may therefore be seen as the post-Deluge counterpart of the primordial deep. The peoples of the Ancient Near East were not entirely wrong in supposing that the great deep still existed in their day.

Earth’s lithosphere is appreciably less rigid, and wetter, than those of other rocky planets (Araki et al. 2009). This is consistent with the Earth’s being the only planet at creation to have hosted water. After the Cataclysm the water either escaped to the surface or became mixed with the upper mantle. The uppermost mantle appears to be saturated with water (Bolfan-Casanova 2005). By lowering its melting temperature water weakens the lithosphere, and it is this weakness that, from the Archaean onwards, facilitated plate tectonics. The melting of crust above the subducting plates led to the formation of granites and hence the foundation of new continents. Without water, paradoxically, there would be no dry land.

The Sun

In the original creation the light that generated cycles of day and night came principally from a source beyond the solar system, daylight having been created three days before the creation of the Sun. What was that light? Modern astronomy has brought us to the point where we can now give a definite answer. Looking back in time to the farthest reaches of the universe, we find that in the beginning there were only quasars, not stars in the modern sense. Quasars, the brightest single objects in the universe, were as bright as entire present-day galaxies, and it is from them that galaxies arose, as quasars ejected voluminous streams of plasma, and the plasma condensed into stars. The clouds of dust and gas permeating the arms of galaxies are the sparse remains, after star formation, of what was ejected from the centre.

Since our own Milky Way is also a galaxy, it too must have originated in this manner. In the beginning there was only a quasar, the source of the light created on the first day. Although it no longer exists, having long since shed most of its mass, a ‘black hole’ containing its collapsed remains still marks the spot. In this respect the Milky Way is unusual. Its central black hole is non-luminous, whereas the black holes at the centre of most galaxies – called ‘active galactic nuclei’ – are so massive that the matter falling into them emits an enormous blaze of light.

The Sun can be inferred to have started as a concentrated globe of pure hydrogen, because pure hydrogen is the simplest chemical state and a cloud of pure hydrogen gas will not, of itself, collapse into a star. Over time the rate at which it fused hydrogen into helium increased, owing to the increase in heat arising from its gravitational contraction, helium being denser than hydrogen. Thus its initial heat output was probably no more than 70% of its present output, and if it had been the only source of heat the Earth’s oceans would have frozen over. This is cosmology’s ‘faint young Sun problem’, since geological evidence shows that the young Earth was actually warmer than today. In our view the light deficiency was made up by the Milky Way’s primordial quasar, while terrestrial heat loss was mitigated by higher levels of greenhouse gases.

The Sun’s present-day helium is the product of the thermonuclear fusion of hydrogen atoms. Its carbon, nitrogen and oxygen, in turn, are fusion products of helium. Its other elements derive from asteroidal debris.

The Moon

The higher level of radioactivity was due to higher proportions of the decaying parent isotopes and a higher velocity of light (‘c’), to which rates of radioactive decay are directly linked. The decline in c was a change which affected the entire universe and must itself have had a physical cause, possibly to do with the energy of (so-called) vacuum. This requires specialist research. It may be related to the problems that the hypothesised existence of ‘dark energy’ and ‘dark matter’ is designed to solve in standard cosmological theory.

In addition to the eruption of the great deep, at least one other violent event rocked the Earth. This was the explosion of a planet close enough for the fragments we now know as asteroids to crash through ‘the windows of the heavens’ and pulverise the land. On the Moon, craters up to thousands of kilometres across provide abiding testimony of the event. At the same time the water vapour that had gradually spread from the edge of the solar system and collected in the Earth’s outer atmosphere collapsed under the onslaught and added to the flooding. Again, the Moon still retains traces of that primordial water.

Originally, the surface of the Moon was not cratered. Nor was the surface blotched by the vast plains of basalt (maria) that erupted in the wake of the impacts.

The Moon’s upper crust is mostly composed of anorthosite, a white igneous rock rich in feldspar. As with other such rocks, it is igneous in the sense that its mineralogy and texture is that of a rock crystallising out of a chemically more primitive magma. The solid state implies an earlier molten state because magma will cool and crystallise by itself to produce such a texture and creator input is not required. Thus cosmologists are not being unreasonable in deducing that the anorthosite crust of the Moon crystallised from a ‘magma ocean’. Indeed, this low-density iron-depleted rock type is exactly what one would expect at the surface if the interior melted.

So the Moon must have been resurfaced in the period before the Cataclysm, as a result of the heat released by thermonuclear fusion and the decay of the radioactive elements produced by the fusion. None of the rocks sampled by the Apollo missions go back to the Creation. Magmatism remade the lunar crust, the cooling of which was accelerated by water from outer space. Not long thereafter bombardment by asteroids shattered most of its surface, blanketing it with dust and ashes kilometres deep. The indistinct rims of the oldest craters show that the crust was still plastic when the first asteroids fell.

Antediluvian geography

Another piece of evidence that suggests we are dealing with an authentic tradition is the place names.

Because the old landmass was totally destroyed, a map of the world would have looked nothing like a modern map. The only remains from pre-Flood geography are names (e.g. “Tigris”, “Euphrates”), referring to features that cannot be correlated with their present-day counterparts.

The first place name in Genesis is Eden (the Hebrew word means ‘delight’). God planted for himself a garden there. Although it is mentioned several times subsequently (e.g. Isa 51:3, Ezek 31:9), as a contemporary place it is rarely mentioned (chiefly Isa 37:12 and Ezek 27:23), and because of its obscurity its location has never been convincingly identified. The Eden that was a byword for a land of fruitfulness was known only from tradition; it was a different Eden, belonging to a world that no longer existed.

The toponyms associated with the original Eden are also irreconcilable with the geography of the Ancient Near East. Genesis tells us that a river flowed up out of Eden to water the garden there (from underground) and then divided into four. This ought to be a clue to its location, if the world in which Eden existed itself still existed, for the rivers are named and two of the names are well known: Tigris and Euphrates. These rivers run through Iraq, with headwaters in eastern Turkey, and there have been attempts (e.g. Rohl 1998) to identify the other two, Pishon and Gihon, which ought to be at least as impressive. However, there is no single river from which the Tigris, Euphrates and two other rivers branch off.

Pishon, moreover, was said to flow ‘round the whole land of Havilah’. Havilah is also mentioned in Genesis 10:7, 10:29, 25:18 and I Samuel 15:7, contexts which show that it must have lain far to the south of Israel, in southern Arabia. Since no river connects Turkey with Arabia, it seems safe to conclude that the primeval Havilah was a different country from the one later known by that name.

Similar arguments may be made in relation to the lands of Cush (Gen 2:13), Assyria (2:14) and Nod (4:16). In Old Testament times Cush was the eponymous name for Ethiopia (Cush being the ‘son’ of Ham whose descendants settled that part of Africa after the Deluge), Assyria was the northern part of Mesopotamia, through, not east of, which the Tigris flowed, and Nod, to judge from the lack of its mention in any other Ancient Near Eastern text, had no post-Flood counterpart at all – perhaps unsurprisingly, in view of its association with the exiled fratricide Cain.

The apparent persistence of topographical names from the antediluvian world has therefore proved something of a red herring. In contrast to the few scholars who have claimed that they could identify the original Eden, most have concluded from the impossibility of doing so that the original Eden was a myth. However, the most likely explanation is that the names were re-assigned to the Near East by migrants who knew about such places from the traditions of their forefathers and wished to simulate continuity with that lost world, much as colonists arriving in North America sought to recreate what they called the old world with names such as Portsmouth, Cambridge and New York. The land of well-watered plains, abundant game, cereals, date-palms, and pulses evoked hopes that it might become a new Eden, and the two main rivers were named accordingly. Some of Mesopotamia’s most ancient cities were named after antediluvian patriarchs, such as Eridu (Eriduk), after Irad (Gen 4:18), and Uruk (Unuk), after Enoch, Irad’s father. When, around the end of the Jemdet Nasr period, the Euphrates breached its banks and devastated a number of the cities in severe flooding, people likened the disaster to the primeval deluge until eventually poets were describing it in the same terms, even to the extent of casting one of their kings in the role of Noah. This purely Mesopotamian flood was, however, a different and much later event.

As a clue to the landing place of the Ark, the reference to ‘the mountains of Ararat’ (plural) is also a red herring. Although located in the post-Deluge world (probably the rim of an impact crater), the mountains were as much part of the Creation-Deluge story as the Tigris and Euphrates, and were therefore equally susceptible to the process of toponym-transfer. The nearest mountains to Mesopotamia were the Zagros range. A country or city in the Zagros called Aratta features in several Sumerian texts of the 3rd millennium BC (in Sumerian the name actually means ‘mountain’). According to the later Gilgamesh epic, which conflated the Deluge and the Mesopotamian flood, the Ark came aground on Mount ‘Nimush’, possibly Pir Omar Gudrun, near Kirkuk. Jeremiah (51:27) mentions that a kingdom called Ararat within reach of Assyria (Isa 37:38) formed an alliance with the kings of Minni and Ashkenaz. Here the context suggests an identification with the similarly named kingdom of Urartu, in Armenia. Although this was a different location, the appropriate conclusion may simply be that the toponym had been transferred again: by the 7th century BC some new region had claimed the distinction. The association with Turkey’s Mount Ararat (Agri Dagh), a volcano which formed in the Late Cenozoic, seems not to be older than the 11th century AD.

As with primeval Eden, the quest for the remains of Noah’s Ark on the basis that it might exist anywhere in the Near East is the quest for a chimaera.

EarthHistory

No comments:

Post a Comment